DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks

Hassan Dbouk ${ }^{1,2}$, Hetul Sanghvi², Mahesh Mehendale ${ }^{2}$, and Naresh Shanbhag ${ }^{1}$
${ }^{1}$ Dept. of Electrical and Computer Engineering, University of Illinois at Urbana Champaign
${ }^{2}$ Kilby Labs, Texas Instruments Inc.

INSTRUMENTS

Motivation

- The complexity of DNNs inhibits their deployment on resource-constrained devices
- Current quantization methods offer conservative complexity reduction for lightweight networks:
- A ternarized MobileNetV1 incurs a massive (6\%)
 accuracy drop

Goal: aggressively quantize lightweight networks while maintaining accuracy

Ternary Branch Quantization

regular computation

- Quantizing parameters to two ternary branches:
- utilizes efficient ternary arithmetic
- offers a 9-level non-uniform quantizer

quantize \mathbf{w}
ternary branch computation

Differentiable Branch Quantizer (DBQ)

- Formulate a B-branch ternary quantizer as a non-uniform quantizer with $N=3^{B}$ levels:

$$
Q(\mathbf{w})=\gamma_{2}\left[\sum_{i=1}^{N-1}\left[f\left(\gamma_{1} \mathbf{w}-t_{i}\right) \sum_{j=1}^{B} b_{i, j} \alpha_{j}\right]-\sum_{j=1}^{B} \alpha_{j}\right]
$$

Where:

- f is an ideal step function
$-\left\{\alpha_{j}\right\}_{j=1}^{B}$ are the branch scales
- $\left\{t_{i}\right\}_{i=1}^{N-1}$ are the quantizer thresholds
- $\gamma_{1} \& \gamma_{2}$ are pre/post quantization scales
- The ternary structure is enforced by the choice of $b_{i, j}$'s

Example: Two Ternary Branches

- A two-ternary branch quantizer can be written as:

$$
\begin{aligned}
& Q(\mathbf{w})=\gamma_{2}\left[\alpha_{2} f\left(\gamma_{1} \mathbf{w}-t_{1}\right)+\left(\alpha_{1}-\alpha_{2}\right) f\left(\gamma_{1} \mathbf{w}-t_{2}\right)\right. \\
& +\left(2 \alpha_{2}-\alpha_{1}\right) f\left(\gamma_{1} \mathbf{w}-t_{3}\right)+\left(\alpha_{1}-\alpha_{2}\right) f\left(\gamma_{1} \mathbf{w}-t_{4}\right) \\
& +\left(\alpha_{1}-\alpha_{2}\right) f\left(\gamma_{1} \mathbf{w}-t_{5}\right)+\left(2 \alpha_{2}-\alpha_{1}\right) f\left(\gamma_{1} \mathbf{w}-t_{6}\right) \\
& +\left(\alpha_{1}-\alpha_{2}\right) f\left(\gamma_{1} \mathbf{w}-t_{7}\right)+\alpha_{2} f\left(\gamma_{1} \mathbf{w}-t_{8}\right) \\
& \left.-\left(\alpha_{1}+\alpha_{2}\right)\right]
\end{aligned}
$$

Differentiability in DBQ

- The non-differentiability of the quantizer comes from the step function $f()$
$f()$: step function
$\hat{f}_{T}()$: temperature controlled Sigmoid

Activation Quantization

- Quantizing activations requires an appropriate clipping value c
- Leverage activation statistics offered by BatchNorm (BN) layers to choose c :

$$
c=\max _{i \in[C]} \beta_{i}+k \gamma_{i}
$$

β_{i} and γ_{i} : the per-channel BN shift and scale parameters; k controls clipping probability

Complexity Metrics

- Computational Cost $\left(\mathcal{C}_{C}\right)$: captures the number of 1-b full adders (FA) needed to implement the dot-products required for a single inference
- Sparsity-Aware Computational Cost (\mathcal{C}_{S}): analogous to \mathcal{C}_{C}, defined in order to leverage weight-sparsity in different models that can be reflected on the model complexity
- Representational Cost $\left(\mathcal{C}_{R}\right)$: measures the number of bits needed to represent the entire network (both weights and activations) for a single inference
- Model Storage Cost (\mathcal{C}_{M}): analogous to \mathcal{C}_{R}, but only accounts for the weight storage as it is useful for studying model compression

CIFAR10 Results: ResNet-20

Compared to a binary branch quantizer for ResNet-20:

- DBQ achieves higher accuracy with lower complexity at iso-number of branches (by exploiting weight sparsity)
- DBQ-2T achieves a 56% reduction in \mathcal{C}_{S}, at iso-accuracy

Method	Acc. $(\boldsymbol{\Delta})[\%]$	$\mathcal{C}_{\boldsymbol{C}}\left(\mathcal{C}_{\boldsymbol{S}}\right)\left[10^{9} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{\boldsymbol{M}}\right)\left[10^{6} \mathrm{~b}\right]$
FP [30]	$92.10(/)$	$23.73(23.73)$	$14.63(8.63)$
LQNet-1B [30]	$90.10(-2.171)$	$1.60(1.60)$	$6.34(0.35)$
LQNet-2B [30]	$91.80(-0.325)$	$2.83(2.83)$	$6.61(0.61)$
LQNet-3B [30]	$92.00(-0.108)$	$4.07(4.07)$	$6.88(0.88)$
FP (Ours)	$92.00(/)$	$23.73(23.73)$	$14.63(8.63)$
DBQ-1T (Ours)	$\mathbf{9 1 . 0 6}(-\mathbf{1 . 0 2 1})$	$\mathbf{1 . 6 0}(\mathbf{0 . 9 2)}$	$6.61(0.61)$
DBQ-2T (Ours)	$\mathbf{9 1 . 9 3}(-\mathbf{0 . 0 7 6})$	$\mathbf{2 . 8 3 (1 . 7 9)}$	$7.15(1.15)$

Ablation Study: MobileNetV1 on ImageNet

- DBQ-1T (one ternary branch) achieves a massive reduction in \mathcal{C}_{C} compared to FP but at a catastrophic loss of 5.67% in accuracy
- DBQ-2T-1 (two ternary branches) recovers the accuracy to within 1.03% of FP while also achieving massive savings in \mathcal{C}_{C} of 84%

Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [\%]	$\mathcal{C}_{\boldsymbol{C}}\left(\mathcal{C}_{S}\right)\left[10^{10} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{\boldsymbol{M}}\right)\left[10^{7} \mathrm{~b}\right]$
FP	ReLU-32b	32b	32b	32b	32b	72.12/90.43	33.37 (33.37)	30.00 (13.54)
FX8-1	ReLU6-8b	32b	8b	8b	32b	71.65/90.17	5.78 (5.39)	10.38 (5.90)
FX8-2	ReLU6-8b	8b	8b	8b	8b	71.60/90.19	5.24 (4.85)	7.56 (3.44)
FX8-3	ReLU x - 8b	8b	8 b	8b	8b	71.86/90.26	5.24 (4.85)	7.56 (3.44)
DBQ-1T	ReLU - 32b	32b	32b	1T	32b	66.45/86.72	3.60 (2.61)	20.58 (4.12)
DBQ-2T-1	ReLU - 32b	32b	32b	2 T	32b	71.09/89.71	5.23 (3.77)	21.21 (4.75)
DBQ-2T-2	ReLU6-8b	32b	8b	2T	32b	70.25/89.42	2.73 (1.97)	9.12 (4.64)
DBQ-2T-3	ReLU x - 8b	32b	8b	2 T	32b	70.80/89.75	2.73 (1.97)	9.12 (4.64)
DBQ-2T-4	ReLU x - 8 b	8b	8b	2T	8b	70.92/89.61	2.18 (1.42)	6.30 (2.18)

Ablation Study: MobileNetV1 on ImageNet

- The Top-1 accuracy of FX8-3 (BN-based clipping) is better than FX8-2 (ReLU6-based clipping) without any overhead in training or inference
- Similarly for DBQ-2T-3 and DBQ-2T-2

Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [\%]	$\mathcal{C}_{C}\left(\mathcal{C}_{S}\right)\left[10^{10} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{\boldsymbol{M}}\right)\left[10^{7} \mathrm{~b}\right]$
FP	ReLU-32b	32b	32b	32b	32b	72.12/90.43	33.37 (33.37)	30.00 (13.54)
FX8-1	ReLU6-8b	32b	8b	8b	32b	71.65/90.17	5.78 (5.39)	10.38 (5.90)
FX8-2	ReLU6-8b	8b	8b	8b	8b	71.60/90.19	5.24 (4.85)	7.56 (3.44)
FX8-3	ReLU x - 8b	8b	8b	8b	8b	71.86/90.26	5.24 (4.85)	7.56 (3.44)
DBQ-1T	ReLU - 32b	32b	32b	1T	32b	$66.45 / 86.72$	3.60 (2.61)	20.58 (4.12)
DBQ-2T-1	ReLU - 32b	32b	32b	2 T	32b	71.09/89.71	5.23 (3.77)	21.21 (4.75)
DBQ-2T-2	ReLU6-8b	32b	8b	2 T	32b	70.25/89.42	2.73 (1.97)	9.12 (4.64)
DBQ-2T-3	ReLU x - 8b	32b	8b	2 T	32b	70.80/89.75	2.73 (1.97)	9.12 (4.64)
DBQ-2T-4	ReLU x - 8b	8b	8b	2 T	8b	70.92/89.61	2.18 (1.42)	6.30 (2.18)

Ablation Study: MobileNetV1 on ImageNet

- DBQ-2T-4, which is DBQ-2T-1 with the remaining layers quantized to 8 b , incurs a minimal loss in accuracy (1.2\%) compared to FP while also achieving even greater reduction in both \mathcal{C}_{C} (93\%) and $\mathcal{C}_{R}(70 \%)$. The reduction in \mathcal{C}_{S} increases to 96% when branch sparsity is exploited to skip computations.

Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [\%]	$\mathcal{C}_{C}\left(\mathcal{C}_{S}\right)\left[10^{10} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{\boldsymbol{M}}\right)\left[10^{7} \mathrm{~b}\right]$
FP	ReLU - 32b	32b	32b	32b	32b	72.12/90.43	33.37 (33.37)	30.00 (13.54)
FX8-1	ReLU6-8b	32b	8b	8b	32b	71.65/90.17	5.78 (5.39)	10.38 (5.90)
FX8-2	ReLU6-8b	8b	8b	8b	8b	71.60/90.19	5.24 (4.85)	7.56 (3.44)
FX8-3	ReLU - 8b	8b	8b	8b	8b	71.86/90.26	5.24 (4.85)	7.56 (3.44)
DBQ-1T	ReLU - 32b	32b	32b	1T	32b	66.45/86.72	3.60 (2.61)	20.58 (4.12)
DBQ-2T-1	ReLU - 32b	32b	32b	2 T	32b	71.09/89.71	5.23 (3.77)	21.21 (4.75)
DBQ-2T-2	ReLU6-8b	32b	8b	2 T	32b	70.25/89.42	2.73 (1.97)	9.12 (4.64)
DBQ-2T-3	ReLU - 8b	32b	8b	2 T	32b	70.80/89.75	2.73 (1.97)	9.12 (4.64)
DBQ-2T-4	ReLU x - 8b	8b	8b	2 T	8b	70.92/89.61	2.18 (1.42)	6.30 (2.18)

ImageNet Results: MobileNetV1

- DBQ-2T achieves the lowest computational cost compared to previously published works, while achieving the highest Top-1 accuracy 70.92\%

Method	Act.	FL	DW	PW	FC	Top-1 Acc. [\%]	$\mathcal{C}_{C}\left(\mathcal{C}_{S}\right)\left[10^{10} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{M}\right)\left[10^{7} \mathrm{~b}\right]$
IAO* [12]	8b	8b	8b	8b	8b	69.00*	4.97 (/)	7.49 (3.37)
UNIQ [1]	8b	5b	5b	5b	5 b	67.50	3.70 (/)	6.29 (2.18)
UNIQ [1]	8b	4b	4b	4b	4b	66.00	3.19 (/)	5.87 (1.76)
UNIQ [1]	8b	8b	8b	8b	8b	68.25	5.24 (/)	7.56 (3.44)
QSM ${ }^{\star}$ [27]	8b	8b	8b	8b	8b	68.03	4.97 (/)	7.49 (3.37)
RQ [19]	5b	5 b	5b	5b	5b	61.50	2.68 (/)	4.75 (2.18)
RQ [19]	6b	6b	6b	6b	6b	67.50	3.42 (/)	5.69 (2.60)
HAQ cloud [28]	mixed	8b	mixed	mixed	8b	$65.33-71.20^{\dagger}$	2.73 (/)	5.09 (3.12)
HAQ edge [28]	mixed	8b	mixed	mixed	8b	$67.40-71.20^{\dagger}$	4.06 (/)	5.87 (2.49)
FP (Ours)	32b	32b	32b	32b	32b	72.12	33.37 (33.37)	30.00 (13.54)
FX8 (Ours)	8 b	8b	8 b	8b	8b	71.86	5.24 (4.85)	7.56 (3.44)
DBQ-2T (Ours)	8b	8b	8b	2 T	8b	70.92	2.18 (1.42)	6.30 (2.18)

*models with BN folding \quad *results extracted from a plot $\quad \dagger$ exact accuracy not reported

ImageNet Results: MobileNetV2 \& ShuffleNetV2

- Inline with our experiments on MobileNetV1, we quantize all PW layers using 2 T , with the remaining layers and activations quantized to 8b fixed-point.
- Observe a minimal 1.3\% (MobileNetV2) and 2.6\% (ShuffleNetV2) drop in accuracy compared to FP, while achieving massive ($77 \%-95 \%$) reductions in all the complexity metrics.

Model	Act. FL DW PW FC					Top-1 Acc. [\%]	$\mathcal{C}_{C}\left(\mathcal{C}_{S}\right)\left[10^{10} \mathrm{FA}\right]$	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{M}\right)\left[10^{7} \mathrm{~b}\right]$
MobileNetV2-FP	32b	32b	32b	32b	32b	71.88	17.83 (17.83)	32.87 (11.22)
MobileNetV2-2T		8b	8b	2 T	8b	70.54	1.42 (1.11)	7.45 (2.04)
ShuffleNetV2-FP	32b	32b	32b	32b	32b	69.36	8.52 (8.52)	13.81 (7.29)
ShuffleNetV2-2T	8b	8b	8b	2 T	8b	66.74	0.64 (0.46)	3.21 (1.38)

Accuracy-Precision-Complexity Trade-off: Dataset

[Chowdhery, arXiv'19]
Google’s Visual Wake Words (VWW) Dataset:

- Binary classification problem (person, no-person)
- Images taken from COCO’14 dataset
- Contains 115 k training images and 8 k validation images
- Reflects a real-life detection scenario for alwayson resource-constrained Edge devices

Accuracy-Precision-Complexity Trade-off: Results

- MobileNetV1 complexity is varied via the width multiplier m which controls the number of channels
- DBQ models form a pareto-optimal curve
- For lightweight models: going from 1T to 2 T is better than increasing m

Thank You!

paper link:

https://arxiv.org/abs/2007.09818

