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Motivation

• The complexity of DNNs inhibits their deployment on 
resource-constrained devices

• Current quantization methods offer conservative
complexity reduction for lightweight networks:

• A ternarized MobileNetV1 incurs a massive (6%) 
accuracy drop

Goal: aggressively quantize lightweight networks while maintaining accuracy
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Ternary Branch Quantization

• Quantizing parameters to two ternary 
branches:

– utilizes efficient ternary arithmetic

– offers a 9-level non-uniform quantizer

• How to train networks with such a structure 
efficiently?
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Differentiable Branch Quantizer (DBQ)

• Formulate a 𝐵-branch ternary quantizer as a non-uniform quantizer with 𝑁 = 3𝐵

levels:

Where:
– 𝑓 is an ideal step function

– 𝛼𝑗 𝑗=1

𝐵
are the branch scales

– 𝑡𝑖 𝑖=1
𝑁−1 are the quantizer thresholds

– 𝛾1& 𝛾2 are pre/post quantization scales

• The ternary structure is enforced by the choice of 𝑏𝑖,𝑗’s
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Example: Two Ternary Branches
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• A two-ternary branch quantizer can be written as:
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Differentiability in DBQ

• The non-differentiability of the quantizer  comes 
from the step function 𝑓()

• Solution: use an approximate smooth function 
መ𝑓𝑇() (e.g. Sigmoid) with a temperature parameter 
𝑇 that controls the approximation error:

𝑇 ↑

𝑓(): step function
መ𝑓𝑇(): temperature controlled Sigmoid



Hassan Dbouk – University of Illinois at Urbana-Champaign

Activation Quantization

• Quantizing activations requires an appropriate clipping value 𝑐

• Leverage activation statistics offered by BatchNorm (BN) layers to choose 𝑐:

𝑐 = max
𝑖∈[𝐶]

𝛽𝑖 + 𝑘𝛾𝑖

𝛽𝑖 and 𝛾𝑖: the per-channel BN shift and scale parameters; 𝑘 controls clipping probability
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Complexity Metrics

• Computational Cost (𝓒𝑪): captures the number of 1-b full adders (FA) needed to 
implement the dot-products required for a single inference

• Sparsity-Aware Computational Cost (𝓒𝑺): analogous to 𝒞𝐶 , defined in order to leverage 
weight-sparsity in different models that can be reflected on the model complexity

• Representational Cost (𝓒𝑹): measures the number of bits needed to represent the 
entire network (both weights and activations) for a single inference

• Model Storage Cost (𝓒𝑴): analogous to 𝒞𝑅, but only accounts for the weight storage as 
it is useful for studying model compression
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CIFAR10 Results: ResNet-20
Compared to a binary branch quantizer for ResNet-20:

• DBQ achieves higher accuracy with lower complexity at iso-number of branches (by 
exploiting weight sparsity)

• DBQ-2T achieves a 56% reduction in 𝒞𝑆, at iso-accuracy
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Ablation Study: MobileNetV1 on ImageNet
• DBQ-1T (one ternary branch) achieves a massive reduction in 𝒞𝐶 compared to FP but 

at a catastrophic loss of 5.67% in accuracy

• DBQ-2T-1 (two ternary branches) recovers the accuracy to within 1.03% of FP while 
also achieving massive savings in 𝒞𝐶 of 84%
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Ablation Study: MobileNetV1 on ImageNet
• The Top-1 accuracy of FX8-3 (BN-based clipping) is better than FX8-2 (ReLU6-based 

clipping) without any overhead in training or inference 

• Similarly for DBQ-2T-3 and DBQ-2T-2
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Ablation Study: MobileNetV1 on ImageNet
• DBQ-2T-4, which is DBQ-2T-1 with the remaining layers quantized to 8b, incurs a 

minimal loss in accuracy (1.2%) compared to FP while also achieving even greater 
reduction in both 𝒞𝐶 (93%) and 𝒞𝑅(70%). The reduction in 𝒞𝑆 increases to 96% when 
branch sparsity is exploited to skip computations.
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ImageNet Results: MobileNetV1
• DBQ-2T achieves the lowest computational cost compared to previously published works, 

while achieving the highest Top-1 accuracy 70.92%
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ImageNet Results: MobileNetV2 & ShuffleNetV2
• Inline with our experiments on MobileNetV1, we quantize all PW layers using 2T, with 

the remaining layers and activations quantized to 8b fixed-point. 

• Observe a minimal 1.3% (MobileNetV2) and 2.6% (ShuffleNetV2) drop in accuracy 
compared to FP, while achieving massive (77% - 95%) reductions in all the complexity 
metrics.
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Accuracy-Precision-Complexity Trade-off: Dataset

Google’s Visual Wake Words (VWW) Dataset:

• Binary classification problem (person, no-person)

• Images taken from COCO’14 dataset

• Contains 115k training images and 8k validation 
images

• Reflects a real-life detection scenario for always-
on resource-constrained Edge devices

[Chowdhery, arXiv’19] 
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Accuracy-Precision-Complexity Trade-off: Results
• MobileNetV1 complexity is varied via the width multiplier 𝑚 which controls the 

number of channels

• DBQ models form a pareto-optimal curve

• For lightweight models: going from 1T to 2T is better than increasing 𝑚

𝟑𝟎%
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paper link:
https://arxiv.org/abs/2007.09818

Thank You!
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