DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural Networks

Hassan Dbouk^{1,2}, Hetul Sanghvi², Mahesh Mehendale², and Naresh Shanbhag¹

¹Dept. of Electrical and Computer Engineering, University of Illinois at Urbana Champaign

²Kilby Labs, Texas Instruments Inc.

Electrical & Computer Engineering

I ILLINOIS

COLLEGE OF ENGINEERING

Motivation

- The complexity of DNNs inhibits their deployment on resource-constrained devices
- Current quantization methods offer *conservative* complexity reduction for *lightweight* networks:
- A ternarized MobileNetV1 incurs a massive (6%) accuracy drop

Goal: aggressively quantize lightweight networks while maintaining accuracy

Ternary Branch Quantization

- Quantizing parameters to two ternary branches:
 - utilizes efficient ternary arithmetic
 - offers a 9-level non-uniform quantizer
- How to train networks with such a structure efficiently?

ternary branch computation

Differentiable Branch Quantizer (DBQ)

• Formulate a *B*-branch ternary quantizer as a non-uniform quantizer with $N = 3^B$ levels:

$$Q(\mathbf{w}) = \gamma_2 \left[\sum_{i=1}^{N-1} \left[f(\gamma_1 \mathbf{w} - t_i) \sum_{j=1}^B b_{i,j} \alpha_j \right] - \sum_{j=1}^B \alpha_j \right]$$

Where:

- f is an ideal step function
- $\{\alpha_j\}_{j=1}^B$ are the branch scales
- $\{t_i\}_{i=1}^{N-1}$ are the quantizer thresholds
- $\gamma_1 \& \gamma_2$ are pre/post quantization scales
- The ternary structure is enforced by the choice of $b_{i,j}$'s

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Example: Two Ternary Branches

• A two-ternary branch quantizer can be written as:

$$Q(\mathbf{w}) = \gamma_2 \Big[\alpha_2 f(\gamma_1 \mathbf{w} - t_1) + (\alpha_1 - \alpha_2) f(\gamma_1 \mathbf{w} - t_2) + (2\alpha_2 - \alpha_1) f(\gamma_1 \mathbf{w} - t_3) + (\alpha_1 - \alpha_2) f(\gamma_1 \mathbf{w} - t_4) + (\alpha_1 - \alpha_2) f(\gamma_1 \mathbf{w} - t_5) + (2\alpha_2 - \alpha_1) f(\gamma_1 \mathbf{w} - t_6) + (\alpha_1 - \alpha_2) f(\gamma_1 \mathbf{w} - t_7) + \alpha_2 f(\gamma_1 \mathbf{w} - t_8) - (\alpha_1 + \alpha_2) \Big]$$

Differentiability in DBQ

- The non-differentiability of the quantizer comes from the step function *f*()
- Solution: use an approximate smooth function $\hat{f}_T()$ (e.g. Sigmoid) with a temperature parameter T that controls the approximation error:

$$e_T(u) = \hat{f}_T(u) - f(u) \xrightarrow[T \to \infty]{} 0$$

f(): step function

 \hat{f}_T (): temperature controlled Sigmoid

Activation Quantization

- Quantizing activations requires an appropriate clipping value *c*
- Leverage activation statistics offered by BatchNorm (BN) layers to choose c:

 $c = \max_{i \in [C]} \beta_i + k \gamma_i$

β_i and γ_i : the per-channel BN shift and scale parameters; k controls clipping probability

Complexity Metrics

- Computational Cost (C_C): captures the number of 1-b full adders (FA) needed to implement the dot-products required for a single inference
- Sparsity-Aware Computational Cost (C_S): analogous to C_C , defined in order to leverage weight-sparsity in different models that can be reflected on the model complexity
- **Representational Cost (** C_R **):** measures the number of bits needed to represent the entire network (both weights and activations) for a single inference
- Model Storage Cost (C_M): analogous to C_R , but only accounts for the weight storage as it is useful for studying model compression

CIFAR10 Results: ResNet-20

Compared to a binary branch quantizer for ResNet-20:

- DBQ achieves higher accuracy with lower complexity at iso-number of branches (by exploiting weight sparsity)
- DBQ-2T achieves a 56% reduction in C_S , at iso-accuracy

Method	Acc. (Δ) [%]	$\boldsymbol{\mathcal{C}_{C}}\left(\boldsymbol{\mathcal{C}_{S}}\right)$ [10 ⁹ FA]	$\mathcal{C}_{\boldsymbol{R}}\left(\mathcal{C}_{\boldsymbol{M}}\right)$ [10 ⁶ b]
FP [30]	92.10 (/)	$23.73\ (23.73)$	14.63(8.63)
LQNet-1B [30]	90.10(-2.171)	1.60(1.60)	$6.34\ (0.35)$
LQNet-2B [30]	91.80(-0.325)	2.83(2.83)	6.61(0.61)
LQNet-3B [30]	92.00(-0.108)	4.07(4.07)	6.88(0.88)
FP (Ours)	92.00 (/)	23.73(23.73)	14.63(8.63)
DBQ-1T (Ours)	$91.06\ (-1.021)$	1.60~(0.92)	6.61(0.61)
DBQ-2T (Ours)	91.93 (-0.076)	$2.83\ (1.79)$	7.15(1.15)

Ablation Study: MobileNetV1 on ImageNet

- **DBQ-1T** (one ternary branch) achieves a massive reduction in C_C compared to FP but at a catastrophic loss of 5.67% in accuracy
- **DBQ-2T-1** (two ternary branches) recovers the accuracy to within 1.03% of FP while also achieving massive savings in C_C of 84%

	Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [%]	$\boldsymbol{\mathcal{C}_{C}}\left(\boldsymbol{\mathcal{C}_{S}}\right)$ [10 ¹⁰ FA]	$\boldsymbol{\mathcal{C}_{R}}\left(\boldsymbol{\mathcal{C}_{M}}\right)\left[10^{7}\mathrm{b} ight]$
	FP	ReLU - 32b	32b	32b	32b	32b	${\bf 72.12}/{f 90.43}$	$33.37\ (33.37)$	$30.00\ (13.54)$
	FX8-1	ReLU6 - 8b	32b	8b	8b	32b	71.65/90.17	5.78(5.39)	$10.38\ (5.90)$
	FX8-2	ReLU6 - 8b	8b	8b	8b	8b	71.60/90.19	5.24(4.85)	7.56(3.44)
	FX8-3	ReLUx - 8b	8b	8b	8b	8b	${\bf 71.86}/{f 90.26}$	5.24(4.85)	7.56(3.44)
	DBQ-1T	ReLU - 32b	32b	32b	1 T	32b	66.45/86.72	3.60(2.61)	20.58(4.12)
	DBQ-2T-1	ReLU - 32b	32b	32b	2T	32b	71.09/89.71	5.23(3.77)	$21.21 \ (4.75)$
	DBQ-2T-2	ReLU6 - 8b	32b	8b	2T	32b	70.25/89.42	2.73(1.97)	9.12(4.64)
	DBQ-2T-3	ReLUx - 8b	32b	8b	2T	32b	70.80/89.75	2.73(1.97)	9.12(4.64)
·	DBQ-2T-4	ReLUx - 8b	8b	8b	2T	8b	$\overline{70.92/89.61}$	2.18 (1.42)	6.30 (2.18)

ILLINOIS Electrical & Computer Engineering

Ablation Study: MobileNetV1 on ImageNet

- The Top-1 accuracy of **FX8-3** (BN-based clipping) is better than **FX8-2** (ReLU6-based clipping) without any overhead in training or inference
- Similarly for DBQ-2T-3 and DBQ-2T-2

Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [%]	$\boldsymbol{\mathcal{C}_{C}}\left(\boldsymbol{\mathcal{C}_{S}}\right)$ [10 ¹⁰ FA]	$\boldsymbol{\mathcal{C}_{R}}\left(\boldsymbol{\mathcal{C}_{M}}\right)\left[10^{7}\mathrm{b}\right]$
FP	ReLU - 32b	32b	32b	32b	32b	72.12 / 90.43	$33.37\ (33.37)$	$30.00\ (13.54)$
FX8-1	ReLU6 - 8b	32b	8b	8b	32b	71.65/90.17	5.78(5.39)	$10.38\ (5.90)$
FX8-2	ReLU6 - 8b	8b	8b	8b	8b	71.60/90.19	5.24(4.85)	7.56(3.44)
FX8-3	ReLUx - 8b	8b	8b	8b	8b	71.86 / 90.26	5.24(4.85)	7.56(3.44)
DBQ-1T	ReLU - 32b	32b	32b	1 T	32b	66.45/86.72	3.60(2.61)	20.58(4.12)
DBQ-2T-1	ReLU - 32b	32b	32b	2T	32b	71.09/89.71	5.23(3.77)	$21.21 \ (4.75)$
 DBQ-2T-2	ReLU6 - 8b	32b	8b	2T	32b	70.25/89.42	2.73(1.97)	9.12(4.64)
DBQ-2T-3	ReLUx - 8b	32b	8b	2T	32b	70.80/89.75	2.73(1.97)	9.12(4.64)
DBQ-2T-4	ReLUx - 8b	8b	8b	2T	8b	70.92 / 89.61	2.18 (1.42)	6.30 (2.18)

ILLINOIS Electrical & Compute

Electrical & Computer Engineering COLLEGE OF ENGINEERING

Ablation Study: MobileNetV1 on ImageNet

• DBQ-2T-4, which is DBQ-2T-1 with the remaining layers quantized to 8b, incurs a minimal loss in accuracy (1.2%) compared to FP while also achieving even greater reduction in both C_C (93%) and C_R (70%). The reduction in C_S increases to 96% when branch sparsity is exploited to skip computations.

	Model Name	Activations	FL	DW	PW	FC	Top-1/5 Acc. [%]	$\boldsymbol{\mathcal{C}_{C}}\left(\boldsymbol{\mathcal{C}_{S}}\right)\left[10^{10}\mathrm{FA}\right]$	$\boldsymbol{\mathcal{C}_{R}}\left(\boldsymbol{\mathcal{C}_{M}}\right)\left[10^{7}\mathrm{b} ight]$
	FP	ReLU - 32b	32b	32b	32b	32b	${f 72.12/90.43}$	$33.37\ (33.37)$	$30.00\ (13.54)$
	FX8-1	ReLU6 - 8b	32b	8b	8b	32b	71.65/90.17	5.78(5.39)	$10.38\ (5.90)$
	FX8-2	ReLU6 - 8b	8b	8b	8b	8b	71.60/90.19	5.24(4.85)	7.56(3.44)
	FX8-3	ReLUx - 8b	8b	8b	8b	8b	${\bf 71.86}/{f 90.26}$	5.24(4.85)	7.56(3.44)
	DBQ-1T	ReLU - 32b	32b	32b	1T	32b	66.45/86.72	3.60(2.61)	20.58(4.12)
	DBQ-2T-1	ReLU - 32b	32b	32b	2T	32b	71.09/89.71	5.23(3.77)	$21.21 \ (4.75)$
	DBQ-2T-2	ReLU6 - 8b	32b	8b	2T	32b	70.25/89.42	2.73(1.97)	9.12(4.64)
	DBQ-2T-3	ReLUx - 8b	32b	8b	2T	32b	70.80/89.75	2.73(1.97)	9.12(4.64)
•	DBQ-2T-4	ReLUx - 8b	8b	8b	2T	8b	70.92 / 89.61	$2.18\ (1.42)$	6.30(2.18)

ILLINOIS Electrical & Computer Engineering

ImageNet Results: MobileNetV1

• DBQ-2T achieves the lowest computational cost compared to previously published works, while achieving the highest Top-1 accuracy 70.92%

Method	Act.	FL	DW	PW	FC	Top-1 Acc. [%]	$\boldsymbol{\mathcal{C}_{C}}\left(\boldsymbol{\mathcal{C}_{S}}\right)$ [10 ¹⁰ FA]	$\boldsymbol{\mathcal{C}_{R}}\left(\boldsymbol{\mathcal{C}_{M}}\right)\left[10^{7}\mathrm{b} ight]$
IAO* [12]	8b	8b	8b	8b	8b	69.00^{*}	4.97~(/)	7.49(3.37)
UNIQ [1]	8b	5b	5b	5b	5b	67.50	3.70 (/)	6.29(2.18)
UNIQ [1]	8b	4b	4b	4b	4b	66.00	3.19~(/)	5.87~(1.76)
UNIQ [1]	8b	8b	8b	8b	8b	68.25	5.24(/)	7.56(3.44)
QSM* [27]	8b	8b	8b	8b	8b	68.03	4.97~(/)	7.49(3.37)
RQ [19]	5b	5b	5b	5b	5b	61.50	$2.68\;(/)$	4.75 (2.18)
RQ [19]	6b	6b	6b	6b	6b	67.50	3.42 (/)	5.69(2.60)
HAQ cloud [28]	mixed	8b	mixed	mixed	8b	$65.33 - 71.20^{\dagger}$	2.73~(/)	5.09(3.12)
HAQ edge [28]	mixed	8b	mixed	mixed	8b	$67.40 - 71.20^{\dagger}$	4.06 (/)	5.87(2.49)
FP (Ours)	32b	32b	32b	32b	32b	72.12	$33.37\ (33.37)$	30.00(13.54)
FX8 (Ours)	8b	8b	8b	8b	8b	71.86	5.24(4.85)	7.56(3.44)
DBQ-2T (Ours)	8b	8b	8b	2T	8b	70.92	$2.18\ (1.42)$	6.30(2.18)
*models with BN folding *results extracted from a plot [†] exact accuracy not reported								

ImageNet Results: MobileNetV2 & ShuffleNetV2

- Inline with our experiments on MobileNetV1, we quantize all PW layers using 2T, with the remaining layers and activations quantized to 8b fixed-point.
- Observe a minimal 1.3% (MobileNetV2) and 2.6% (ShuffleNetV2) drop in accuracy compared to FP, while achieving massive (77% - 95%) reductions in all the complexity metrics.

Model	Act.	\mathbf{FL}	DW	\mathbf{PW}	FC	Top-1 Acc.	$[\%] \mathcal{C}_{C} (\mathcal{C}_{S}) [10^{10} \text{FA}]$	$\boldsymbol{\mathcal{C}_{R}}\left(\boldsymbol{\mathcal{C}_{M}}\right)\left[10^{7}\mathrm{b}\right]$
MobileNetV2-FP	32b	32b	32b	32b	32b	71.88	$17.83\ (17.83)$	32.87(11.22)
MobileNetV2-2T	8b	8b	8b	$2\mathrm{T}$	8b	70.54	$1.42 \ (1.11)$	7.45 (2.04)
ShuffleNetV2-FP	32b	32b	32b	32b	32b	69.36	8.52(8.52)	$13.81 \ (7.29)$
ShuffleNetV2-2T	8b	8b	8b	2T	8b	66.74	$0.64 \ (0.46)$	$3.21 \ (1.38)$

Accuracy-Precision-Complexity Trade-off: Dataset

[Chowdhery, arXiv'19]

Google's Visual Wake Words (VWW) Dataset:

- Binary classification problem (person, no-person)
- Images taken from COCO'14 dataset
- Contains 115k training images and 8k validation images
- Reflects a real-life detection scenario for alwayson resource-constrained Edge devices

Accuracy-Precision-Complexity Trade-off: Results

- MobileNetV1 complexity is varied via the width multiplier *m* which controls the number of channels
- DBQ models form a pareto-optimal curve
- For lightweight models: going from 1T to 2T is better than increasing m

ILLINOIS Electrical & Computer Engineering COLLEGE OF ENGINEERING

Hassan Dbouk – University of Illinois at Urbana-Champaign

Thank You!

paper link: https://arxiv.org/abs/2007.09818

Hassan Dbouk – University of Illinois at Urbana-Champaign

