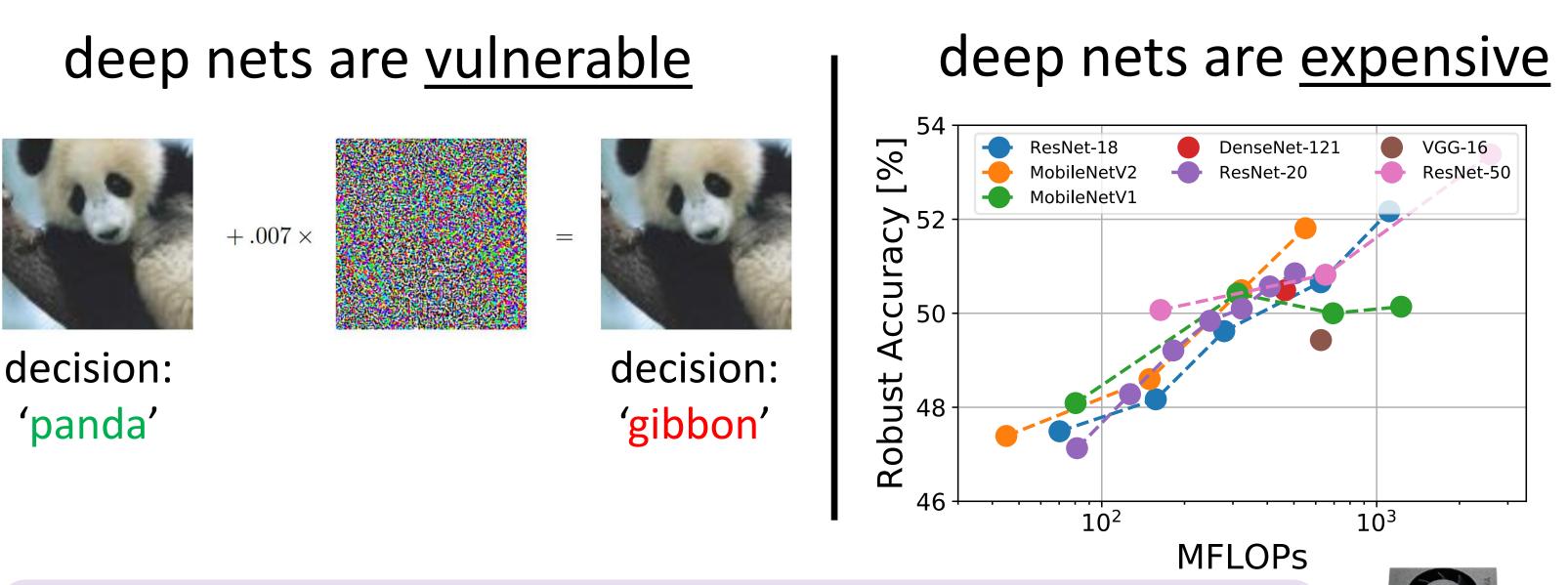
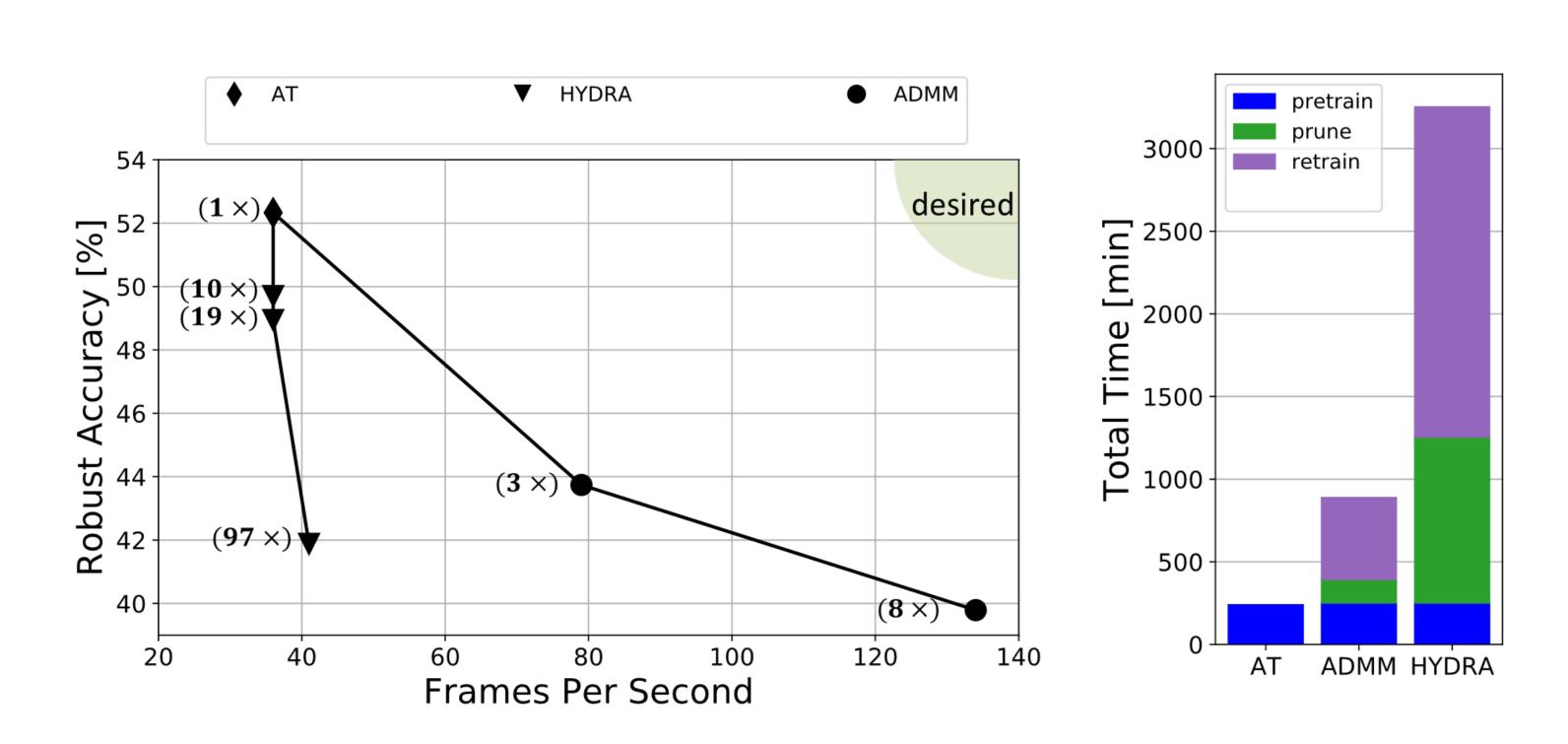


Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

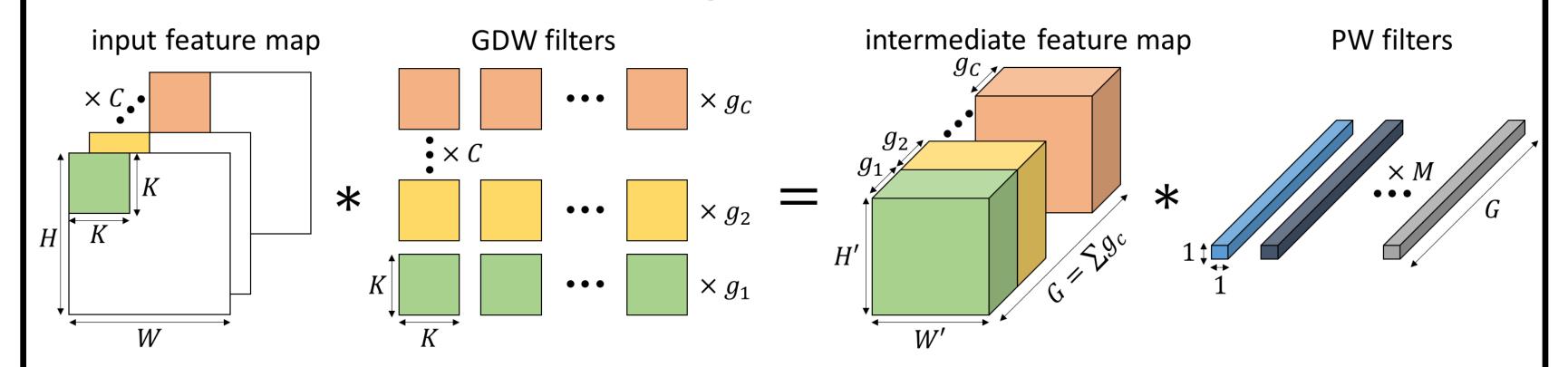


Spotlight

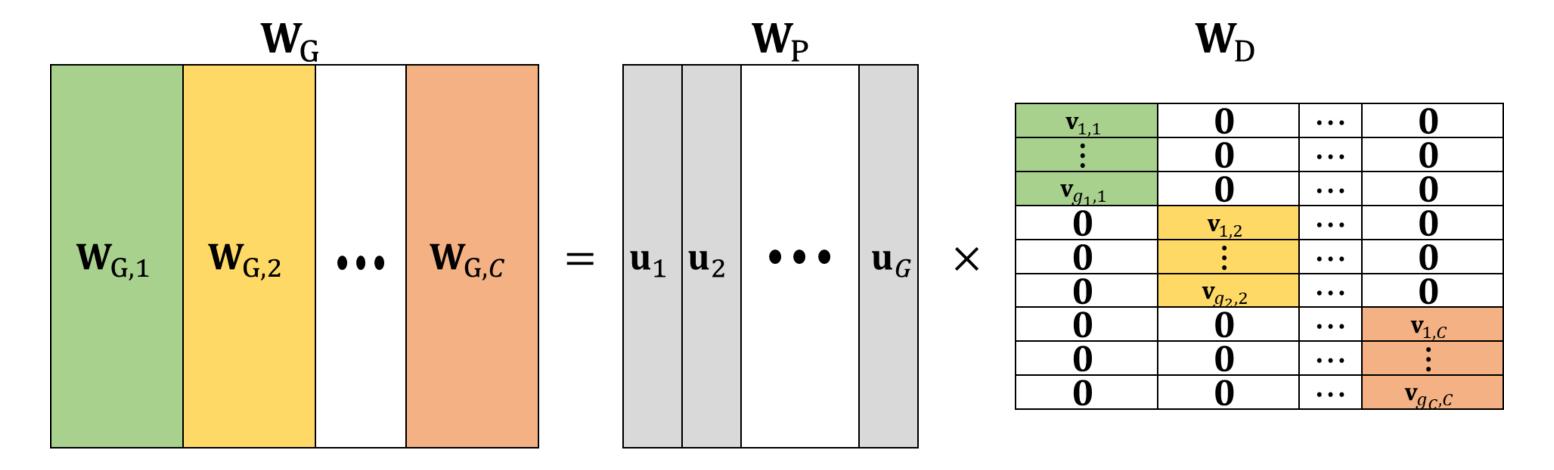
Hassan Dbouk & Naresh Shanbhag - *University of Illinois at Urbana-Champaign* {hdbouk2,shanbhag}@illinois.edu


Motivation

design robust and accurate deep nets that achieve high FPS when mapped onto edge hardware


Limitations of Existing Techniques

- reductions often <u>don't</u> translate to hardware
- makes AT more expensive
- ad hoc in nature, no theoretical basis behind them


Generalized Depthwise-Separable Convolutions

Two-stage Convolution

how to choose the g_c 's? \rightarrow optimal approximation algorithm

Structure of Equivalent 2D Convolution

 $\mathbf{W}_{G,c} \in \mathbb{R}^{M \times K^2}$ & $\operatorname{rank}(\mathbf{W}_{G,c}) \leq \min(g_c, K^2) \ \forall c \in [C]$

Main Result: Error-constrained Optimal Approximation

Theorem: Given a (C,K,M) standard 2D convolution with weight matrix \mathbf{W} , the (C,K,\mathbf{g},M) GDWS approximation with weight matrix $\widehat{\mathbf{W}}$ that minimizes the complexity $\gamma(\mathbf{g})$ subject to $e(\mathbf{W},\widehat{\mathbf{W}},\alpha) \leq \beta$ (for some $\beta \geq 0$), can be constructed in polynomial time via the LEGO Algorithm.

Experimental Results – CIFAR-10

GDWS vs. HYDRA [NeurIPS'20]

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
$VGG-16 + GDWS (\beta = 0.5)$	82.72	51.93	58.4	36
	82.53	50.96	50.6	102
VGG-16 $(p = 90\%)$	80.54	49.44	5.9	36
+ GDWS $(\beta = 0.1)$	80.47	49.52	31.5	93
VGG-16 $(p = 95\%)$	78.91	48.74	3.0	36
+ GDWS $(\beta = 0.1)$	78.71	48.53	18.3	106
VGG-16 $(p = 99\%)$	73.16	41.74	0.6	41
+ GDWS $(\beta = 0.02)$	<u>72.75</u>	41.56	2.9	136

GDWS vs. ADMM [ICCV'19]

Models	$\mathcal{A}_{\mathbf{nat}}$ [%]	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
VGG-16	77.45	45.78	56.2	36
+ GDWS ($\beta = 0.5$)	<u>76.40</u>	46.28	38.8	119
VGG-16 $(p = 25\%)$	77.88	43.80	31.6	26
VGG-16 $(p = 50\%)$	75.33	42.93	14.0	113
VGG-16 $(p = 75\%)$	70.39	41.07	3.5	174
ResNet-18	80.65	47.05	42.6	28
+ GDWS ($\beta = 0.75$)	79.13	$\underline{46.15}$	30.4	105
ResNet-18 ($p = 25\%$)	81.61	42.67	32.1	31
ResNet-18 ($p = 50\%$)	79.42	42.23	21.7	60
ResNet-18 ($p = 75\%$)	74.62	43.23	11.2	74

- HYDRA: compromises robustness, minimal improvements in FPS
- ADMM: compromises robustness, high FPS
- GDWS: <u>preserves</u> robustness and <u>boosts</u> FPS significantly

GDWS vs. Lightweight Networks

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FP
ResNet-18 + GDWS	81.17	50.98	29.1	104
VGG-16 + GDWS	77.17	49.56	28.7	129
MobileNetV1	79.92	49.08	12.3	125
MobileNetV2	79.59	48.55	8.5	70
ResNet-18 (DWS)	80.12	48.52	5.5	120
ResNet-20	74.82	47.00	6.4	125

GDWS vs. RobNet [CVPR'20]

Models	$\mid \mathcal{A}_{ ext{nat}} \mid \% brace$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
RobNet	82.72	52.23	20.8	5
ResNet-50	84.21	53.05	89.7	16
+ GDWS	83.72	52.94	81.9	37
WRN-28-4	84.00	51.80	22.3	17
+ GDWS	<u>83.27</u>	<u>51.70</u>	18.9	<u>65</u>

GDWS + standard networks <u>outperform</u> RobNet & MobileNets

Summary

- GDWS: universal and efficient approximations of 2D convolutions
- dramatically improves FPS while preserving robust accuracy
- operates on <u>pre-trained</u> models → no additional training

Acknowledgement: This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).