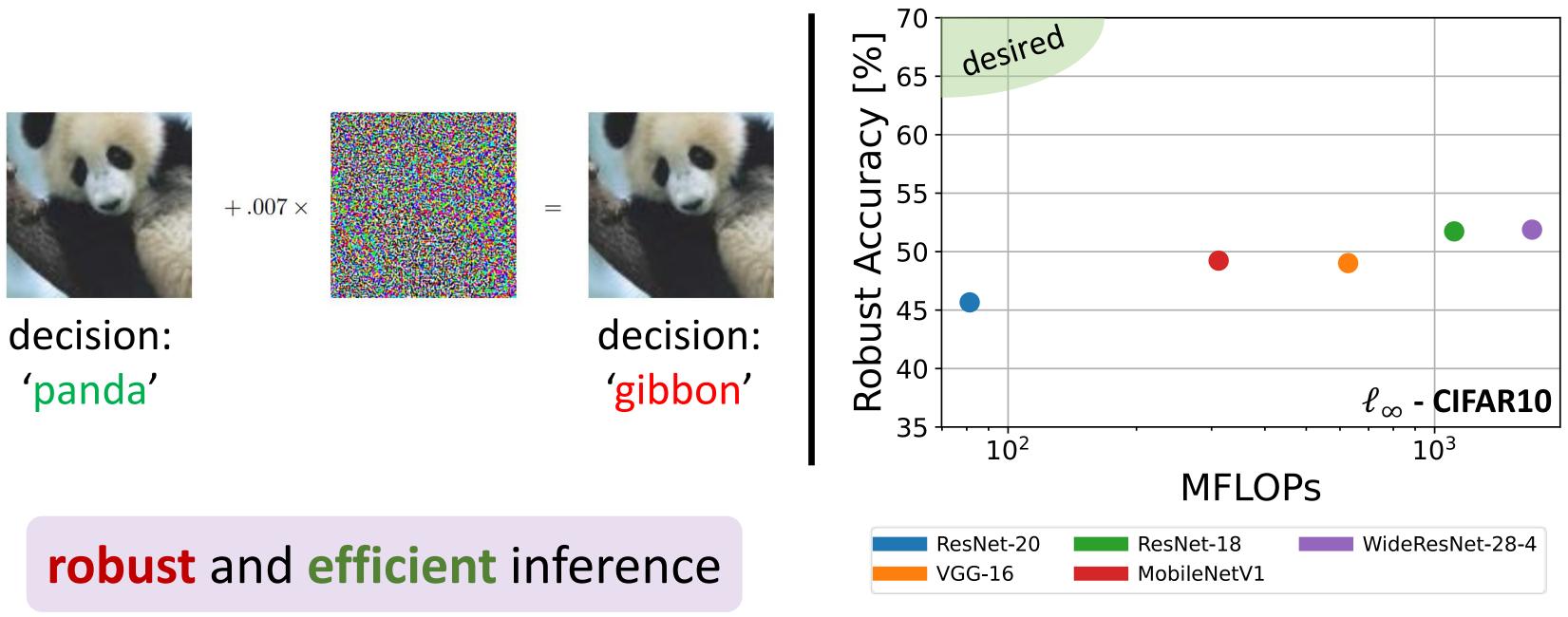


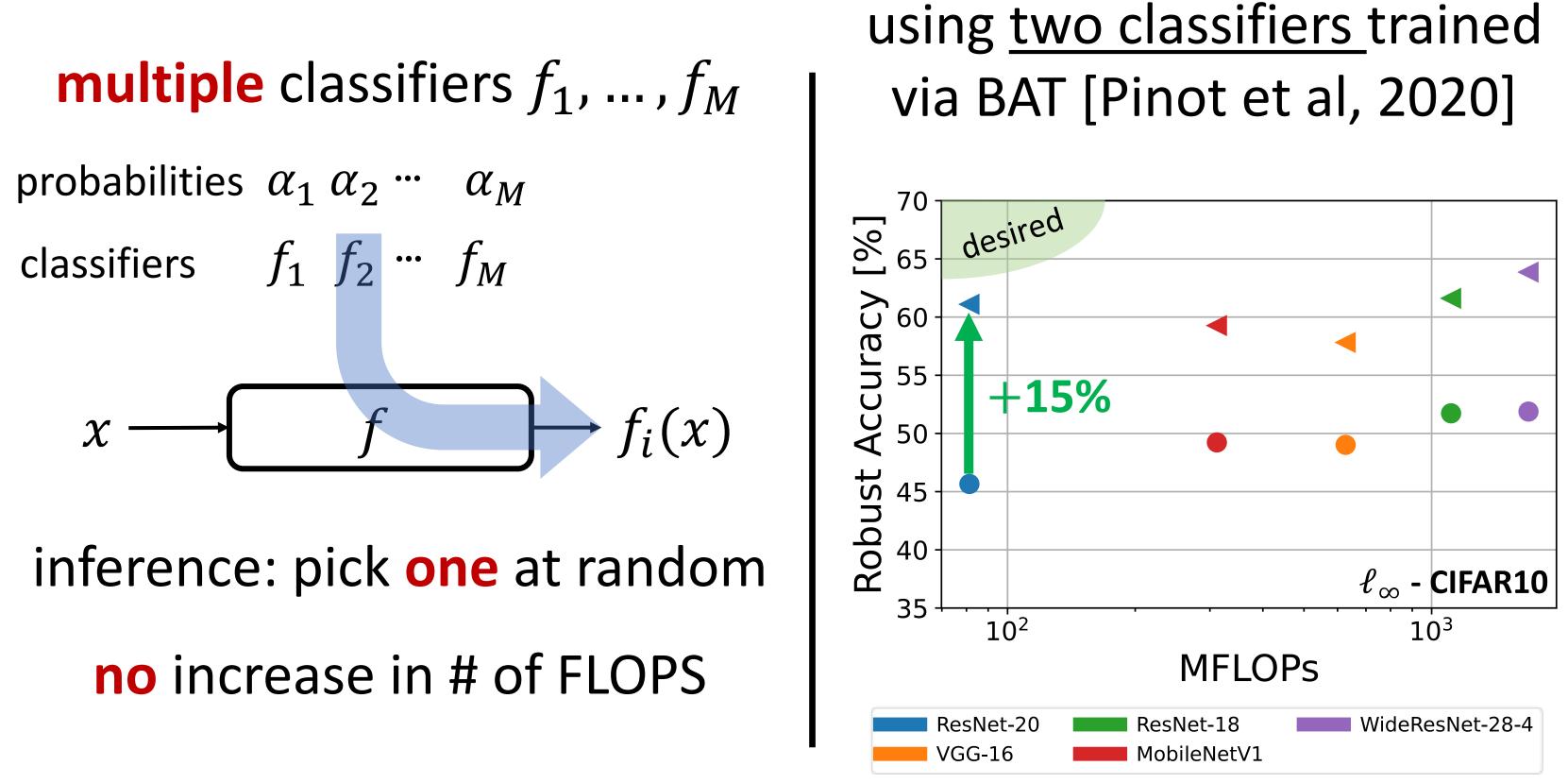
Motivation

deep nets are vulnerable

robustness is expensive



Robustness via Randomized Ensembles



are the robustness gains provided by randomized ensembles real?

Adversarial Vulnerability of Randomized Ensembles

Hassan Dbouk & Naresh Shanbhag - University of Illinois at Urbana-Champaign {hdbouk2,shanbhag}@illinois.edu

Revealing the Vulnerability

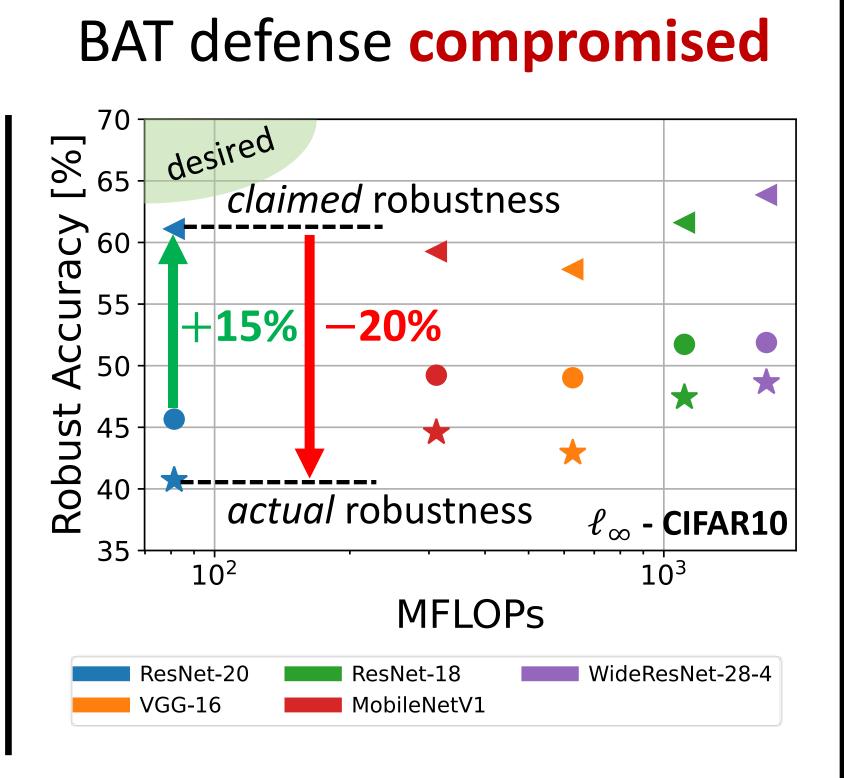
main contributions

- show that adaptive PGD (APGD) is <u>ill-suited</u> for evaluating robustness
- propose a provably consistent and efficient adversarial attack algorithm – ARC: Attacking Randomized ensembles of **C**lassifiers
- demonstrate that existing randomized ensembles defenses are in fact more vulnerable than standard AT

ARC Algorithm – Binary Linear Classifiers

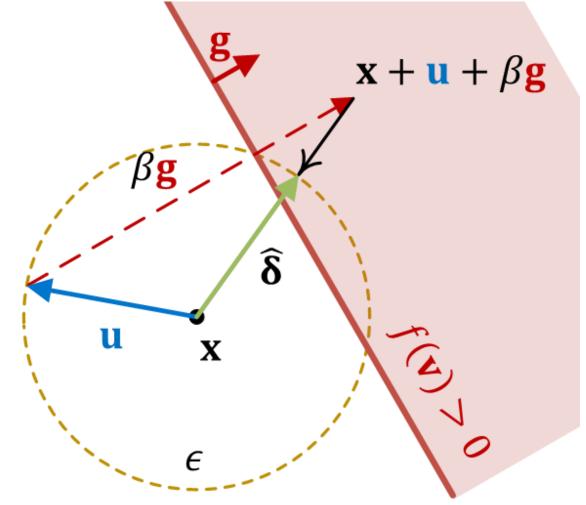
Algorithm 1 The ARC Algorithm for BLCs
1: Input: REC $(\mathcal{F}, \boldsymbol{\alpha})$, labeled data-point (\mathbf{x}, y) , norm p ,
and radius ϵ .
2: Output: Adversarial perturbation δ such that $\ \delta\ _p \leq \delta$
ϵ .
3: Initialize $\boldsymbol{\delta} \leftarrow 0, v \leftarrow L(\mathbf{x}, y, \boldsymbol{\alpha}), q \leftarrow \frac{p}{p-1}$
4: Define \mathcal{I} such that $\alpha_i \geq \alpha_j \ \forall i, j \in \mathcal{I}$ and $i \leq j$.
5: for $i \in \mathcal{I}$ do
6: /* optimal unit ℓ_p norm adversarial direction for f_i
7: $\mathbf{g} \leftarrow -y \frac{ \mathbf{w}_i ^{q-1} \odot \operatorname{sgn}(\mathbf{w}_i)}{\ \mathbf{w}_i\ _q^{q-1}}$
8: /* shortest ℓ_p distance between x and f_i SMa
9: $\zeta \leftarrow \frac{ f_i(\mathbf{x}) }{\ \mathbf{w}_i\ _q}$
10. if $\zeta > \epsilon \lor i = 1$ then
11: $\beta \leftarrow \epsilon$ $\widehat{\mathbf{\delta}} = 1$
12: else
13: $\beta \leftarrow \frac{\epsilon}{\epsilon - \zeta} \left \frac{y \mathbf{w}_i^{\mathrm{T}} \boldsymbol{\delta}}{\ \mathbf{w}_i\ _q} + \zeta \right + \rho$ Ca
14: end if
15: $\hat{\delta} \leftarrow \epsilon \frac{\delta + \beta \mathbf{g}}{\ \delta + \beta \mathbf{g}\ _p} \triangleright \text{ candidate } \hat{\delta} \text{ such that } \ \hat{\delta}\ _p = \epsilon$
16: $\hat{v} \leftarrow L(\mathbf{x} + \hat{\boldsymbol{\delta}}, y, \boldsymbol{\alpha})$
17: /* if robustness does not increase, update δ
18: if $\hat{v} \le v$ then
19: $\boldsymbol{\delta} \leftarrow \hat{\boldsymbol{\delta}}, v \leftarrow \hat{v}$
20: end if
21: end for

Theorem: the ARC algorithm for BLCs is **consistent**



greedily iterate over all classifiers <u>once</u> novel adaptive step size computation:

lest $\beta > 0$ ch that $\gamma(\mathbf{u} + \beta \mathbf{g})$ n fool *f*



extend to multiclass differentiable classifiers (e.g., neural nets)

Experimental Results – ARC vs. APGD Ensembles trained via BAT [Pinot et al., 2020]

varying networks - CIFAR-10

Network	Norm	ROBU AT $(M = 1)$	ROBUST ACCURACY [%] T $(M = 1)$ REC $(M = 2)$				
		PGD	APGD	ARC	DIFF		
ResNet-20	ℓ_2	62.43	69.21	55.44	-13.77		
	ℓ_∞	45.66	61.10	40.71	-20.39		
MOBILENETV1	ℓ_2	66.39	67.92	59.43	-8.49		
	ℓ_∞	49.23	59.27	44.59	-14.68		
VGG-16	ℓ_2	66.08	66.96	59.20	-7.76		
V00-10	ℓ_∞	49.02	57.82	42.93	-14.89		
ResNet-18	ℓ_2	69.16	70.16	65.88	-4.28		
KESINEI-10	ℓ_∞	51.73	61.61	47.43	-14.18		
WIDERESNET-28-4	ℓ_2	69.91	71.48	62.95	-8.53		
WIDERESINEI-20-4	ℓ_∞	51.88	63.86	48.65	-15.21		

- BAT defense **compromised**
- network topologies

Acknowledgement: This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and Artificial Intelligence Hardware (AIHW) program funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).

varying datasets

			ROBUST ACCURACY [%]				
DATASET	Norm	RADIUS (ϵ)	AT $(M = 1)$	REC $(M = 2)$			
			PGD	APGD	ARC	DIFF	
SVHN	ℓ_2	128/255	68.35	74.66	60.15	-14.51	
	ℓ_∞	8/255	53.55	65.99	52.01	-13.98	
CIFAR-10	ℓ_2	128/255	62.43	69.21	55.44	-13.77	
	ℓ_∞	8/255	45.66	61.10	40.71	-20.39	
CIFAR-100	ℓ_2	128/255	34.60	41.91	28.92	-12.99	
	ℓ_∞	8/255	22.29	33.37	17.45	-15.92	
IMAGENET	ℓ_2	128/255	47.61	49.62	42.09	-7.53	
	ℓ_∞	4/255	24.33	35.92	19.54	-16.38	

• ARC outperforms APGD across various datasets, norms, and

Summary & Next Steps

• demonstrated theoretically and empirically that **ARC** is better suited for evaluating the robustness of randomized ensembles

• existing randomized ensembles defenses are more vulnerable to ℓ_n -bounded perturbations than adversarially trained models.

• our work advocates the need for improved randomized defense methods including <u>certifiable</u> defenses